I've made money by just trying to do world-class science. That's the goal that we're setting at Celera. If we do world-class science and create new medicine paradigms, the money will more than follow at a corporate level and at a personal level.

Traditional autobiography has generally had a poor press. The novelist Daphne du Maurier condemned all examples of this literary form as self-indulgent. Others have quipped that autobiography reveals nothing bad about its writer except his memory.

Space X's Elon Musk wants to colonize Mars with modules where earthlings can live. My teleporting technology is the number one way those individuals will get new information, new treatments of diseases that will occur on the planet, and new food sources.

We find all kinds of species that have taken up a second chromosome or a third one from somewhere, adding thousands of new traits in a second to that species. So, people who think of evolution as just one gene changing at a time have missed much of biology.

Darwin didn't walk around the Galapagos and come up with the theory of evolution. He was exploring, collecting, making observations. It wasn't until he got back and went through the samples that he noticed the differences among them and put them in context.

It turns out synthesizing DNA is very difficult. There are tens of thousands of machines around the world that make small pieces of DNA - 30 to 50 letters in length - and it's a degenerate process, so the longer you make the piece, the more errors there are.

I've always been fascinated with adrenaline; it's saved my life more than once, and it's caused me to need it to save my life more than once. One of the most fascinating responses in human evolution, adrenaline sharpens your brain; it sharpens your responses.

Right now, oil is being isolated around the globe, and there is a major effort in shipping, trucking and otherwise transporting that oil around to a very finite number of refineries. Biology allows us to make these same fuels in a much more distributed fashion.

One of the challenges with a government health system, like in the UK, with all of this data, is that you have a government making decisions on which treatments they'll pay for and which ones they won't. That's a dangerous, dangerous, place to get into society.

How we understand our own selves and how we work with our DNA software has implications that will affect everything from vaccine development to new approaches to antibiotics, new sources of food, new sources of chemicals, even potentially new sources of energy.

Preventative medicine has to be the direction we go in. For example, if colon cancer is detected early - because a person knew he had a genetic risk and was having frequent exams - the surgery is relatively inexpensive and average survival is far greater than 10 years.

I think I've achieved some good things; doing the first genome in history - my team on that was phenomenal and all the things they pulled together; writing the first genome with a synthetic cell; my teams at the Venter Institute, Human Longevity, and before that Celera.

I've had a very unusual background in science - not the usual route of planning on being a scientist from age 3. I think my story shows that success is more about personal motivation and determination than it is about where you were born or what your economic status was.

'Bloomberg's, you know, for people who don't use the service, provides through the Internet - through specialized computers - information about the financial world. It's a very large data base. I think they have on the order of a billion dollars or more a year in revenue.

I think from my experience in war and life and science, it all has made me believe that we have one life on this planet. We have one chance to live it and to contribute to the future of society and the future of life. The only "afterlife" is what other people remember of you.

Since my own genome was sequenced, my software has been broadcast into space in the form of electromagnetic waves, carrying my genetic information far beyond Earth. Whether there is any creature out there capable of making sense of the instructions in my genome, well, that's another question.

Every single cancer is a genetic disease. Not necessarily inherited from your parents, but it's genetic changes which cause cancer. So as we sequence the genomes of tumours and compare those to the sequence of patients, we're getting down to the fundamental basis of each individual person's cancer.

Part of the problem with the discovery of the so-called breast-cancer genes was that physicians wrongly told women that had the genetic changes associated with the genes that they had a 99% chance of getting breast cancer. Turns out all women that have these genetic changes don't get breast cancer.

The leading edge of the best science in the world is being driven by private money, and investment money because of the scarcity of government money to do this. It's not only by far the best and most advanced science, we're driving the equation at Human Longevity that everyone else is beginning to follow as well.

Mathematicians have been hiding and writing messages in the genetic code for a long time, but it's clear they were mathematicians and not biologists because, if you write long messages with the code that the mathematicians developed, it would more than likely lead to new proteins being synthesized with unknown functions.

We have 200 trillion cells, and the outcome of each of them is almost 100 percent genetically determined. And that's what our experiment with the first synthetic genome proves, at least in the case of really simple bacteria. It's the interactions of all those separate genetic units that give us the physiology that we see.

Share This Page